THE AMSTERDAM
HYPERMEDIA MODEL:

On the surface, hypermeaia is a simpie anda natural extension of mul-
timedia and hypertext: multimedia provides a richness in data types
that facilitates flexibility in expressing information, while hyper-
text provides a control structure that supports an elegant way
of navigating through this data in a content-based manner.
Unfortunately, the concepts that apply to collections of static infor-
mation do not all translate well to complex collections of dynamic
information. What does it mean, for examplie, to follow a link in a
hypermedia presentation when the source node consists of nonper-
sistent data? Does the source presentation freeze, does it go away,
do parts of it go away? Similarly, how shouid the synchronization
relationships within and among elements in a composite component
be defined? Is this part of the hypermedia model or part of a data
storage or data presentation model? in our view, a general hyper-
media model needs to be able to specify both the conventional link-
based navigation elements of hypertext and the complex timing and
presentation relationships found in muitimedia presentations. Such
a model is presented here.

use of anchors, allows dawa-
dependent information to be
recorded separately from the
hyperstructure.) The AHM
extends the Dexter model by
adding to it the notions of
time, high-level presentation
attributes and link context. A
portion of this extension is
based on the basic aspects of
the CMIF multimedia docu
ment model [3, 4]. By combin
ing the relevant aspects of the
Dexter and CMIF models, we
are able to take the existing
notions of hypertext presenta
tions and add to these the
implementation-independent
behavior model of multime-
dia found in CMIF.

We start our consideration
of hypermedia systems with a

Intuitively, support for hypermedia
can be defined by taking the Dexter
Hypertext Reference Model [7, 8],
and augmenting it with multimedia
data types within its storage layer. The
Dexter model provides a facility for
creating links within a document, with
the links being anchored inside docu-
ment components. The notions of
links, anchors and components are
basic to hypertext systems, and since
they are not tied to any particular type
of implementation or to any particular
type of data, integrating them into a
hypermedia system would seem to be
a straightforward task. (Note that this
does not make the task easy: finding a
general way to indicate the presence
of a link in a dynamic data, or provid-
ing means of “clicking” a portion of
video or audio, remain difficult and
unsolved problems.) Although such a
“marriage of convenience” can pro-
vide immediate results, the underly-
ing control assumptions of the Dexter
model make it unsuitable for describ-
ing and supporting generalized hyper-
media documents.' In particular, this
approach cannot adequately support

complex temporal relationships among
data items, specifications that support
high-level presentation semantics, or a
notion of “information context” that
specifies global behavior when a link is
followed—all elements that are of fun-
damental importance in supporting
hypermedia.

This article presents the Amsterdam
Hypermedia Model (AHM), a gen
eral framework that can be used to
describe the basic constructs and
actions that are common to a wide
range of hypermedia systems. We pre-
sent the AHM in the context of the
Dexter model’s hypertext technology
and terminology. We do this because
hypertext is—in the time scale of
information technology—a relatively
mature discipline, with a well-defined
model of general system behavior.
The AHM is developed as an exten-
sion to the Dexter model in order to
capitalize on its contributions to
understanding hypertext systems. (In
particular, the Dexter model allows
the composition of hierarchical struc-
tures, the specification of links be-
tween components, and, through the

5° February 1994/Vol.37, No.? COMMUNICATIONS OF THE ACM

discussion of the basic

requirements for a hyperme-
dia model. We then present the
AHM, considering both the general
model structure and its implementa-
tion implications. We conclude with a
discussion of the current state of our
hypermedia implementation experi
ments. (Throughout our discussion,
the body of this article will refer to a
running example of a hypermedia
presentation; this example s
described in the sidebar “A Hyper-
media Example.”)

Requirements for Describing
Hypermedia

The use of dynamic media is not
unique to multimedia systems. The
inclusion of time-based information
(such as audio or video data) can also
be supported within conventional

'"We use the following conventions throughout
this article to describe hypermedia: a document is
a complete collection of related components
Each component can be built recursively from
other components or from primitive data ele
ments of various types, also called entities. A pre
sentation is the active form of a document. In
normal use, the terms document and presenta
tion are nearly mterchangeable, as are (10 a
lesser extent) entity and component. Generally,
context should clarify usage.

ADDING

hypertext. While rudimentary sup-
port for “time” is not difficult to retrofit
into existing systems, the develop
ment of a more general model for
managing the elements in a presenta-
tion will be required, since more
applications make use of loosely cou
pled collections of dynamic and static
objects fetched from potentially dis-
tributed sources, all of which need to
be synchronized in some nontrivial
manner. To put the requirements of
such a generalized model into con-
text, a brief overview of the defining
characteristics of hypertext, multime-
dia and hypermedia is given followed
by the requirements for modeling
time, links (and link context), and
global presentation semantics in a
hypermedia.

Hypertext, Multimedia and
Hypermedia

Figure 1 provides a high-level review
of the essential aspects of the hyper-
text, mulimedia and hypermedia
models. In Figure la, a hypertext is
modeled as a network of components
related through a set of links an-
chored in source and destination
components. While various imple-
mentations of hypertext may impose
different constraints on the internal
structure of a component or the
exact nature of a link/anchor set, all
systems support the notion of “visit-
ing” a component for a user-deter-
mined amount of time, with that visit
either terminated by the end of the
application or interrupted/replaced/
augmented by following a link to one
or more other components. Note
that the meaning of visiting a compo-
nent—that is, the visual effects dis-
played to the user in terms of pieces
of text, graphics, sounds, and so
forth—is usually considered an in-
ternal property of the data.

Figure 1b illustrates a generic mul-
timedia presentation. Like Figure la,
the presentation is made up of a col-
lection of components. Unlike Figure
la, the components are meant to be
presented in some author-defined
relative order. The existence of such
an ordering relationship depends on
an explicit notion of time in the
model. While the user still may have
control over the selection of compo-
nents to be visited, the components
selected and presented can change

without direct user intervention be-
cause of this notion of time. (That 1s,
the model not only defines the com-
ponents of the presentation, but it
also defines an ordering relation-
ship that specifies when the compo-
nents are presented relative to one
another.)

Multimedia systems typically sup-
port two types of navigation facilities
that provide a user with control over
the presentation. One method ad-

justs the current time reference in a

presentation, indicated by the heavy
horizontal line in Figure 1b; by using
a control interface similar to that of
an audiocassette or compact disc
player, the user can stop/start/fast-
forward/rewind (and sometimes
search through) the presentation.
The second—and less common—
navigation type is similar to a rudi-
mentary hypertext link, indicated by
the anchor and link arrow in the fig-
ure. Here, following the link would
bring the user to the time point that
is indicated by the dotted line in the
illustration. This is essentially equiva-
lent to a fast-forward operation, ex-
cept that the ‘stop point’ is defined by
the document author rather than by
the user.

Figure lc gives a high-level de-
scription of one way of combining
hypertext and multimedia: by having
each component of the hypertext
model be a self-contained multime-
dia presentation. This model ad-
dresses two sets of concerns: those
that relate to the hyperstructured
navigation through the document,
and those that relate to the multime-
dia presentation of information. For
many simple forms of hypermedia
support, the sketch in Figure lc pres-
ents an adequate model of system
behavior. As we will see, however,
this view limits the flexibility of the
author in defining a presentation
and the user in viewing one.

Temporal Information

In general, a hypermedia model
should be able to specify how indi-
vidual pieces of information relate to
one another at any level that a docu-
ment author feels appropriate. This
level would depend on the way the
data was stored and on the presenta-
tion/navigation abilities of the run-
time systems available to users. The

52 February 1994/Vol.37, No.? COMMUNICATIONS OF THE ACM

specification of tming constraints
within a document thus depends on
the nature of the underlying data
clements and on the way these can be
combined for presentation. The in-
ternal structure of data will be be-
yond the scope of the hypermedia
model, but the composition of com-
ponents remains central to the
model.

In conventional hypertext, time is
addressed indirectly, often in terms
of a presentation’s behavior as it fol-
lows a hypertext link. Such an ap-
proach is unfortunate because it
binds together two separate aspects
of a presentation. Instead, we parti-
tion the temporal relationships
among data items in two broad
classes: those related to the identifi-
cation of the components that are to
be presented together, and those that
relate to the relative order in which
these components are presented. We
call these classes collection and synchro-
nization. At a coarse level, the Dexter
model provides support for collec-
tion via the hierarchical definition
components. As is illustrated in Fig-
ure 2, Dexter’s composite compo-
nents can be used to collect a set of
atomic components that are to be
presented together. (In terms of the
Amsterdam tour example described
in the sidebar “A Hypermedia Exam-
ple,” we could define a composite
component that consisted of the vari-
ous data entities that make up each
screen.) Since the definition of the
composite does not provide a mecha-
nism for specifying any relative tim-
ing relationships among the entities,
however, this approach is not suffi-
ciently rich for general use. The
problem to be overcome is that, once
collected, the components need to be
synchronized, typically both within
and across components. Such syn-
chronization can be based on struc-
tural information—that is, by manip-
ulating data representations within
components—or it can be based on
the content of a component.

Consider the lower-left screen in
the Amsterdam tour example. This
view of street musicians can be de-
fined as a (possibly structured) col-
lection of files/objects/database en-
tries that make up the components in
the screen. These elements could be
synchronized based on the author’s

by per EXTIES

(a) Hypertext

Time

(b) Multimedia

B .

components

(of various media types) I anchor

Timeu__:
Time l]
Time
il
(c) Hypermedia
T link

(a)

Presentation = : Presentation == ;
- f : B Component-specific pres. info
Specification | Fomponant apeciic g Inio | Specification I F P ; !
Attributes i Semantic Information I Attributes I Semantic Information I
Anchors | Anchor ID Anchors Anchor ID
Value Value
Contents | Data block or pointer to data Children | Component ID fn]
Contents | Data block or pointer to data |

(b)

(or authoring system’s) knowledge of

the sample and frame rates of each
item. They could also be synchro-
nized in a content-based manner,
such as specifying that the two ele-
ments needed to end at the same
time, or by specifying that a cymbal
crash in the soundtrack needed to be
synchronized with the associated
event in the video segment.

There are several ways to ap-
proach the problems of collection
and synchronization within hyper-
media. Three general strategies are
shown in Figure 3: we call these the

hidden structure, the separate structure
and the composite structure ap-
proaches.

Hidden structure approach. The
most basic (and most prevalent) way
to handle time-based data in a hyper-
text context is to place all the data—
and all the data interpretation—
inside the content portion of a com-
ponent. In Dexter terms, this solu-
tion pushes multimedia information
into the within-component layer.
Collection (in terms of defining a set
of entities that are to be shown at the
same time) is solved by having a sin-

Figure 1. Hypertext, multimedia
and hypermedia

Figure 2. Dexter model atomic (a)
and composite (b) components

COMMUNICATIONS OF THE ACM [chruary 1994/ Vol 37, No.2 53

Y

hyper

Y

A Hypermedia Example

ypermedia presentations can take many shapes and forms. They can

be models of flexibility, enabling the user to pick and choose among

the data items presented, or they may be rigidly structured presen-
tations that mimic—perhaps too closely—broadcast television, where the user
has a binary interaction option: turn it on or turn it off.

One form of a multimedia presentation is depicted in Figure A. The three
screens” shown in Figure A make up part of a tour of Amsterdam. Each
screen is divided into a number of regions, with each region holding a simple
or composite stream of multimedia data. Some of the regions have data con-
taining anchors (the anchors are indicated by dotted lines around the regions).

A general table-of-contents portion of the presentation containing five re-
gions appears in the top screen: one title region at the top-left of the screen
(in this case saying “Welcome to Amsterdam'’), a logo-region (containing the
CWI logo), a video region (shown displaying one frame of a video on a canal
house in the city), a text frame displaying a set of paragraphs on the nature of
the demo, and an audio track containing supplemental information. The entire
logo region and a portion of the text region contain visual buttons associated
with links to other portions of the presentation. Following the link from the

Welcome to Amsterdam = cwi

o

Introduction audio

Walking through the city Ccwi

Contents Boats Contents Gables

Music playing g Boat sound effects g

Figure A. An example hypermedia presentation

logo region, for example, will give the reader some background information
on the Institute where this video was created.

The lower-left screen shows a portion of the “walking tour' section of the
presentation, showing a collection of street musicians entertaining commuters
at the city’s central railway station. This screen has a title region, a video re-
gion, an audio region and two navigation regions. One navigation button will
return the user to the upper display, while the other allows a user to jump to
a part of the walking tour that describes the types of boats one is likely to see
in the canals. The screen at lower right is structured similarly to that at left,
except that the contents of several of the regions have been changed: a new
video atomic component has been used (to show boats on the canals), a new
sound track is used (with boat sound effects and commentary), and a Gables
button replaces the Boats button.

The presentation outlined here could have been constructed with a number
of multimedia authoring systems, using a variety of underlying architectures.
From a hypermedia perspective, there are a number of information structuring
issues that need to be considered in describing presentations of this type.
These issues, which include the logical and structural reiationships of screens
to one another, are discussed in the body of this article.

BA vy 1994/Vol 37, No. COMMUNICATIONS OF THE ACM

gle link target that uses internal tech-
niques to define relative entity syn-
chronization. This approach does
not require a basic change in the
hypertext model. It can lead to effec-
tive presentations and even a limited
amount of combination of data items
within a component. The disadvan-
tage of this approach is that it does
not scale well to more complex mult
media data combinations.

The structure shown in Figure 3a,
for example, consists of eight pieces
of information of four media types.
Not all the pieces start at the same
time—meaning that a sophisticated
mechanism must exist to control pre-
sentation of the component. This
control can be embedded in the defi-
nition of the data (such as is used in
systems that take data from a single
source, like a CD-ROM format [16]),
or by expressing complex relation-
ships among multimedia items that
are subsequently accessed as a single
entity [2]. Both of these approaches
have interesting applications, but
they do not extend easily to a more
general case in which data is distrib-
uted over several file servers and
combined at run time (or where in-
formation is stored across a collection
of distributed multimedia databases).
In all cases, the use of a complex
composite component structure is
impossible within the Dexter tframe-
work, since time 1s not explicitly con-
sidered in the model.

Separate structure approach. The
opposite of the hidden structure
approach is to define each piece of
multimedia information as a separate
block. Collection can be supported
using a multitarget link, allowing
cach component to be activated when
the link was followed. In terms of our
Amsterdam tour example, this would
mean that the top-middle picture
would be made up as the target of a
link containing five separate objects.
When this link was selected, the run-
time system would start the objects
simultaneously. (Such an approach is
similar to that taken by the Interme-
dia project [15].) While collection can
be supported in this way, synchroni-
zation becomes a significant prob-
lem: in a generalized model, not all
components can be expected to start
at exactly the same instant. Figure 3b
illustrates a combination of compo-

Time

(a) Hidden Structure

=]

¥

(b) Separate Structure

Time

o o o oo o o o o 2

o
£S

I I I T I T I I ITIIIT I T

(c) Composite Structure

ER[C 1@ [] mediaitems

I anchor

T e link

nents that all need to be activated
after a link is taken, but in which the
starting times are not coincident.
Clearly, some method 1s required to
state when each component should
start relative to the others. One solu-
tion is to place relative timing infor-
mation into the link structure, as is
done in Harmony [5] and Videobook
[13]. As with the Intermedia ap-
proach, this can be useful for specify-
ing the interaction of a limited num-
ber of nodes, but it requires the
author to define and maintain infor-
mation in links that combine collec-
tion, synchronization and navigation
control into a single construct. This
increases authoring and mainte-
nance complexity because a great
number of links will need to be cre-
ated and maintained by the author-
ing software. These approaches also
have the disadvantage that the con-
tent association among components
15 lost, and that any user selectivity
or customization of a presentation
requires complex user-interface
software.

Composite structure approach. A
compromise solution to the problem
of collecting components and syn-
chronizing pieces is shown in Figure
3c. Here, several elements have been
grouped into three composite com-
ponents, one of which hides internal
synchronization and collection of two

atomic components

@]

Pomea e
e e

Bl anchor

media types and two of which man-
age data of a single media type. Col-
lection 1s less complex than in the
separate structure approach, and the
synchronization problem 1s also re-
duced by internalizing any complex
relationships. While direct applica-
tion of such an approach may prove
adequate for simple applications, it
does not solve the general problem
of specifying the time-based relation-
ships within the hypertext model: 1t
simply reduces the problem to a
number of subproblems, each solved
by one of the two approaches de-
scribed in the two preceding para-
graphs. Grouping of components is a
useful way of specifying collecting
structured components if this is ac-
companied by a well-developed no-
tion of time within the general

COMMUNICATIONS OF THE ACM February 1994/ Vol 37, No.2 D

Figure 3. Time and structuring
Issues

Figure 4. Dexter link compo-
nents

model, as will be discussed in the fol-
lowing subsection.

Links in Hypermedia

Links are perhaps the most funda-
mental notion of hypertext systems.
While links have an influence on
both the order of the presentation
and the components displayed simul-
taneously, these temporal aspects do
not represent the central nature of
the link. Instead, the function of the
link should be to define a logical nav-
igation mechanism in a document.

The use of links within the Dexter
model is illustrated in Figure 4. Here
we see a link that has its source in a
composite component and its desti-
nation in an atomic component, One
of the basic aspects of a link is that it
defines a traversal from one compo-
nent to another. The notion of a link
within a component, however, pres-
ents a fundamental problem not con-
sidered within the Dexter model.
Such a link may be used inside a
long, complex component as a means
of fast-forwarding through the data.
(This is how it is used in Figure 1h.)
Another use may be to impose a
mechanism for allowing some ele-
ments of a component to persisi
while others change when a link is
tollowed.

For conventional text-based sys-
tems, the use of a link as an intra-
component structure is not typically
considered within the context of a
general model, since blocks of text
can be broken into arbitrarily small
collections of characters (such as
books, chapters, sections, para-
graphs, sentences, clauses, words,
and letters). This allows new compo-
nents to be created whenever a link is
defined by dividing an existing com-
ponent at some “convenient” bound-
ary. (Specification of such a bound-
ary is supported by the Dexter
anchoring mechanism, which allows
a general method for specifying off-
sets into components.) This ap-
proach works well within hypertext
systems because the logical element
making up the bulk of the data—the
character—is closely associated with
the structural element used to define
the data itself, the byte. It is also
aided by the relationship between
two successive blocks of characters
not being typically constrained by a

fixed tming relatonship. In mulu-
media systems, the association of
links with and within components is
considerably more complex. Data
items often cannot be easily broken
indexed in
manner. For example, dividing a
video fragment into a scene-shot-
frame hierarchy is possible, but the
relationship of content to represen-
tation is less clean than in hypertext
systems. (For films, scenes and shots
are generally content-based, while
frames are representation-based.) If
a single video sequence is to be bro-
ken apart to support a link, a com-
plex editing and presentation pro-
cess would be necessary to ensure
continuity—a process that would
depend on how information is stored
and accessed, as well as on the con-
tent of the data.

A second, and more fundamental
problem with extending hypertext
links to hypermedia is that current
hypertext systems do not clearly de-
fine the notion of how much infor-
mation the reader leaves when fol-
lowing a link. Most systems present a
single hypertext node which is either
replaced by the destination informa-
tion, or is left on the screen while
another window is created for the
destination information (c.g., Inter-
media [15]). There is, however, no
way of choosing between these op-
tions—the choice is determined by
the destination of the link. Having an
either-or model is useful for text
(where most readers can only focus
their attention on one block of text at
a time), but it is less useful for multi-
media presentations, where a user
can follow a link from one block to
another while continuing to listen to
a spoken commentary or watch a
video presentation. In hypermedia, it
is important that the model define a
control framework so the user can
specify the behavior that is appropri-
ate to the needs of the application.

In order to address this problem, a
method needs to be defined that al-
lows portions of a component to be
treated as minicomponents for link-
INg purposes, or a new construct
needs to be added to support more
generalized linking behavior in hy-
permedia. Our solution to this prob-
lem is to introduce the notion of a
link context.

'd})'cl]‘l or a convenient

56 February 1994/Vol 37, No ! COMMUNICATIONS OF THE ACM

High-Level Presentation
Specification Attributes

The preceding topics have dealt with
concepts that are related directly to
the presentation of complex combi-
nations of time-based and static data.
Now we consider the requirements
for managing the presentation of
each type of data individually. We
introduce the problem by way of ex-
ample, once again considering the
description of the Amsterdam tour
presented in the sidebar “A Hyper-
media Example.”

Each of the screens of the Amster-
dam tour uses a collection of output
media, including audio, video, and
several forms of text. Fach screen
contains unique data elements, but
all screens have elements that share a
common set of attributes for a partic-
ular data type used during one in-
stance of the presentation. Consider
the audio output used throughout
the presentation: in each screen, dif-
ferent audio data sets will be used,
but each screen will share attributes
such as volume or tone-quality set-
tings. Note that some of these attri-
butes will depend on the workstation
presenting the information, such as
the audio quality of the local devices
or the ability to support stereo/mono
output. Other attributes may depend
on the preferences of a particular
viewer/listener to the presentation,
such as the volume level of the out-
put. Since both of these types of attri-
butes would be defined on a per-
presentation basis, not a per-screen
basis, a mechanism should exist that
allows their global definition.

Just as word processors allow the
definition of global styles for differ-
ent structures (for example, section
heading or paragraph body), hyper-
media documents require a higher-
level way of specitying presentation
mformation than at the per-compo-
nent level. Such attributes would en-
sure the audio volume would not
need to be reset by the user for each
screen opened, or that the system’s
audio drivers would not need to be
reinitialized for every data block sent
to a device. Such global attributes
would not be attached to a single
component, but would instead be
associated with a class of media/
information types. The attribute def-
mitions could consist of default set-

byp e r ETTIEN

tings that could be overridden when
necessary, or as a set of basic attri-
butes that could be augmented on a
component-by-component basis.

One motivation tor providing such
attributes 1s to support users access-
ing documents by allowing prefer-
ence to be set once instead of at each
data reference. Another is to be able
to define documents having a mea-
sure of portability by abstracting pre-
sentation information that may be
machine-dependent from an individ-
ual component. Although such
global attributes are not considered
directly in the Dexter model, they do
capture some of the intent of sepa-
rating presentation information for
data within a component. The mech-
anism we use (o manipulate these at-
tributes is the CMIF channel, which
we will consider in detail.

Amsterdam Hypermedia Model
The AHM was developed to provide
a comprehensive basis for combined
multimedia and hypermedia re-
search. The model was detined by
combining the Dexter hypertext
model with the CMIF multimedia
model and adding extensions to sup-
port those requirements of hyperme-
dia that were left unaddressed. The
AHM has been used to define the
information model in CMIFed au-
thoring/player environment (see the
sidebar “CMIFed—An AHM-Based
Authoring Environment”), which has
been used to create several hyperme-
dia applications.

AHM Components

Figure 5 shows the conceptual data
structure for a) atomic and b) com-
posite components. (The names and
general structure of these compo-
nents reflect the AHM’s Dexter heri-
tage; also see Figure 2.) The atomic
component, shown in Figure 5a, con-
tains metainformation that refers to
a particular data block, while the
composite component defines such
information for a collection of atomic
or composite blocks. Note that the
Cf)n]pOSile (:Oln])()nel][({UCS not con-
tain support for data in the compos-
ite’s definition—data can only be ref-
erenced via an atomic component.
This has three advantages over the
Dexter approach. First, it localizes
information on timing and presenta-

-
L

tion to an atomic component and
concentrates information on presen-
tation structure to the composite
component; this should ease the task
of document maintenance. Second, 1t
promotes reusability of data by forc-
ing all items to be separately main-
tained. Finally, it more closely mod-
els the way the bulk of multimedia
imformaton will be stored: in exter-
nal databases or file systems.”

AHM components, like
their Dexter counterparts, contain
presentation information, compo-
nent attributes, link anchor informa-
tion and a contents field. The signifi-
cant addition to the atomic block is
an expanded presentation informa-
tion section. A portion of this ex-
panded information is used to model
time-related aspects of the block,
while others are used to encode high-
level presentation attributes.

The AHM composite component
includes several items not found in
the Dexter model. The principal
change is that the composite compo-
nent serves a more specific role in the
AHM than in typical hypertext sys-
tems: the composite component is
used to build a presentation struc-
ture rather than to simply collect re-
lated components for navigational
purposes. The composite compo-
nent’s presentation attributes contain
component-specific information but
no duration value: these can be ob-
tained from the collection of atomic
components used by the composite.
Instead, the presentation specifica-
tion contains a collection of synchroni-
zation arcs, which are structures that
define fine-grained relative ordering
imformation. (Synchromzation arcs
are defined later.) The anchor and
attribute sections of the AHM are
essentially the same as those in Dex-
ter, except for a dereferencing of
anchors to a list of <Component 1D,
Anchor ID> pairs. The specification
of the components of the composite
has been expanded to include timing
offsets among the children and a
composite type attribute. The type of a
composite can be either parallel or
choice; parallel composite compo-
nents display all of their component

alomic

“Individual implementations may choose to
support small amounts of in-line data as an op-
timization; our system allows this for text
blocks.

58 February 1994/Vol.37, No.! COMMUNICATIONS OF THE ACM

parts, while choice composites will
display at most one of their children.
(The selection mechanism is imple-
mented by the run-time support en-
vironment.) As noted, the composite
component does not include any data
directly.

Temporal Relations

The principal mechamsm for sup-
porting temporal relatonships
among entities is the composite com-
ponent. The definition of the com-
posite supports collection via a list of
child components, each of which may
be a composite or atomic component.
Synchronization among components
is supported in two ways: one for
coarse-grained synchronization and
the other for fine-grained synchroni-
zation. Coarse-grained synchroniza-
tion consists of constraints defined
between the children of a composite
component, such as the relative start-
ing time of ecach child within the
composite; this information is given
exphcitly with the child definition.
Fine-grained synchronization con-
sists of constraints among either sib-
ling or nonsibling (nested) children
within the composite component;
these constraints are specified using
synchronization arcs. Note that addi-
tional synchronization is possible
within the definition of an atomic
component’s data; this is not consid-
ered part of the hypermedia model,
but is instead a characteristic of the
data object.

Figure 6 summarizes the timing
control within the AHM. It shows
three composite components (a, b,
and ¢), and eight atomic components.
Each of the atomic and embedded
composite components has a start
time offset, represented by the line
from the upper-left ot the composite
definition. (Note: the length has
been exaggerated for purposes of
clarity.) This offset gives the relative
start time of each component. Each
atomic component contains a dura-
tion attribute (or an estumate, for
synthesized data); this duration is not
shown in the figure. Two synchroni-
zation arcs are shown in the figure,
the meanings of which are discussed
in the following paragraph. Figure 6
is a crude approximation of the top
screen in our Amsterdam tour exam-
ple: component a represents the

Sp;r)i?:?f?égggg [Channel name i ggiiﬁ?é:::gg Component-specific pres. info.
I SR Npeans of mmalch | Synchronization | from_Component ID
[Other comp.- specific pres. info. | Arcs | to_Component ID
Attributes [Semantic information | ‘T|mmg [eton
G o Ll Attributes I Semantic information |
Value
Anchors | Anchor ID
Contents | Data block or pointer to data list of (Comp. ID, Anchor ID) H
Composite type | Choice or parallel |
Children | Component ID
Start time
e
screen as seen by the user, which is 7]
made up of two top-level atomic
items and one composite. The top- \’T
level atomic items of a represent the B [c]
CWI logo and a headline text block l,/""
containing “Welcome to Amster-
dam.” The composite b contains two
sequential audio tracks giving an in- >
troduction to the tour, a video show-
ing parts of the city, and a text block
containing instructions and three e start-offset 1 anchor ——a link ‘¢, synchronization arc
anchors. The composite ¢ contains
information about our institute.
(Note that the sequencing within the a .
composite b depends on the ability to source and destination scheduling synchronization
separately schedule events and then components interval type
to constrain aspects of their run-time : : /
behavior.) — — - :
The synchronization arc .(!i)l‘ syne schggf.:—l?:énttime br:;glg'ﬁme r:;:;r{:;rg
arc) allows an author to specify fine-
grained synchronization information Y
among components [3]. It is not used tart / end / offset hard / advi
as a navigation aid or as a type of start/ end / offse ard /advisory
link. It is a constraint that the run-

time system should support on the
behavior of two or more compo-
nents. The sync arc is a construct that
provides a flexible mechanism for
establishing relationships in a multi-
media system. Figure 7 shows the
basic elements of a sync arc in detail.
The end-point component IDs are
given, as is the timing relation to be
supported. The timing relation is
given in terms of a synchronization

Figure 5. Amsterdam Hyperme-
dia Model (AHM)

Figure 6. AHM components and
timing relations

Figure 7. AHM synchronization

COMMUNICATIONS OF THE ACM [chruary 1994/ Void7, Noo

mterval, containing a target time and
acceptable deviations, and a synchro-
nization type. The type consists of an
indication of whether the interval is
relative to the start or end of the
component, or whether it is an otfset
trom the start. The second portion of
the type is an indication of whether
the relationship must be met or if it is
simply an advisory relationship. (If a
hard relationship cannot be sup-
ported by the run-time system, an
error condition exists; if an adwisory
relationship cannot be met, the ap-
plication will keep running; the use
of interval-based synchronization
gives the run-time environment a
measure of flexibility in supporting
the relationship.) In terms of Figure
6, the intracomponent sync arc
shown may define a requirement
that the second audio block needs to
start in time for both the audio and
video components to end together,
while the intercomponent sync arc
can be used to ensure that two text
blocks remain on the screen for an
equal duration.

The primary advantage of the way
that AHM specifies temporal rela-
tionships is that a clear separation is
made among the collection of com-
ponents that are to be shown to-
gether, the relative ordering of those
objects and the detailed timing con-
straints that can exist during the pre-
sentation of a collection of objects.

AHM Link Context

The temporal aspects of the AHM
component architecture provide a
convenient method of grouping and
synchronizing related objects. Com-
posite components do not, however,
provide information on how each
component behaves when a link is
followed out of that component or
within a composite component. In
order to describe this type of behav-
1or, the AHM defines the notion of a
link context. A context is a (typically
composite) component that contains
a collection of composite or atomic
components affected by a linking
operation. (While the Dexter model
already allows the specification of
composite components with a link,
these are not used explicitly to define
a context.) A source context for a link is
that part of a hypermedia presenta-
tion affected by initiating a link, and

a destination context as that part of the
presentation which is played on ar-
riving at the destination of the link.

The context mechanism allows
specific display options to be associ-
ated with each link. In particular, the
source context can be retained or
replaced when a link is followed. If it
is replaced, the run-time environ-
ment can determine if the old re-
sources used for the source are ap-
propriate for the destination context.
(Since the context 1s associated with
the model, a run-time environment
can perform these checks dynami-
cally or statically.) If the source con-
text 1s retained, it can be allowed to
continue playing, or it can be forced
to pause—with the choice left to the
document author.

A benefit of specifying context is
that only part of the document struc-
ture needs be affected on following a
link. Components of the presenta-
tion higher in the composition hier-
archy remain active and only those at
the lower levels are aftected. This
reduces the authoring burden of
repeating the same higher-level
structures for different presenta-
tions. For example, when the reader
activates the Boats anchor in the
lower-left screen of our Amsterdam
tour, only three of the atomic com-
ponents are replaced while the oth-
ers remain on the screen. (The three
replaced are the illustration video,
the audio track and the component
specifying the next subject in the se-
quence, in this case the Gables but-
ton.) The document m the figure
uses only two levels but the model
imposes no restriction on the depth
of the hierarchy. (Contexts are dis-
cussed in greater detail in [11].)

AHM Channels: Encoding High-Level
Presentation Attributes

Both the Dexter model and the
AHM allow presentation attributes to
be specified for individual atomic
and composite components. While
these attributes are sufficient for
local control, they are inadequate for
specifying more global attributes of a
document. Such attributes are de-
fined in the AHM using channels.
Channels are abstract output de-
vices for playing the content of a
component. Associated with each
channel are default presentation

60 February 1994/Vol 37, No! COMMUNICATIONS OF THE ACM

characterisucs tor the media-type(s)
displayed via that channel, such as

font and style for a text channel, or

volume for an audio channel. Chan-
nels store media-type independent
specifications, such as background,
foreground and highlight colors, or
whether the channel is on or off; and
media-type dependent characteris-
tics such as font size and style for
text, or scaling factor for graphics.
The number of channels 1s not
restricted. When a hypermedia
document is played the channels
are mapped onto physical output
devices.

Figure 8 illustrates the allocation
of abstract channels for an expanded
version of our Amsterdam tour ex-
ample. Two audio channels are de-
fined, one containing commentary in
Dutch and one in Enghsh. Three
linking channels are defined (la-
beled 1.0, L1 and [.2), which are as-
sociated with the atomic components
containing the text contents, begin
route over and next. Two captions
channels are defined (for holding
Dutch and English text strings) and
one screen channel is defined for the
video data object. Note that the on/
oftt channel attribute allows a user to
specity which of the channels are ac-
tive at run tume; this allows a tull pre-
sentation to be defined (for a variety
of audiences), with particular in-
stances of the presentation available
on demand, customized to user pref-
erences and to local hardware facili-
ties on the presentation host. This
feature allows the fragment shown in
Figure 8 to be used to present either
Dutch language audio and Enghlish
language subtitles (or vice-versa),
with the selection supported by the
run-time environment. (While a pre-
sentation providing English and
Dutch audio and English and Dutch
captions would be possible—as-
suming enough screen “real-estate”
and audio bandwidth existed—the
usefulness of such a selection would
depend on the nature of the user.)

The use of channels also allows the
same document to be presented in
different ways by respecitying the
styles rather than by changing the
presentation specification “for every
item. Just as in paper documents, this
encourages consistency throughout
the presentation. Flexibility is main-

hyper EXIIEN

Screen

channel

English Caption channel

Dutch Caption channel

LO channel | L/ channel | L2 channel |

‘contents’

tained by allowing overrides for indi-
vidual components.

Current Implementation Status

The CMlIFed authoring and run-
time environment described in the
sidebar “CMIFed—An AHM-Based
Authoring Environment” is used to
experiment with an implementation
based on a modified version of the
AHM. The most important differ-
ence in composition between the
AHM and the model supported in
CMIFed is that the AHM parallel

component is split into two types of

composition constructs— parallel and
sequential. The purpose of support-
ing an extra type of composition in
the authoring system is to allow the
convenient definition of how a group
of components are to be displayed
during the presentation (that is, the
parallel and sequential hierarchical
structures are used to derive first-
order timing information for the
presentation). The derivation of this
timing information removes the re-
quirement for explicitly specifying

timing information for each child of

the composite.
Support for links and anchors in

“ b
: next
‘begin route over’

CMIFed 15 less general than the
AHM. The source of a link in
CMIFed is an anchor within an
atomic component; the destination
can be an anchor, or an atomic or
composite component (i.e., we do not
support the source of a link being a
composite component). This has
implications for assigning the con-
texts for the ends of a link. We cur-
rently derive the source and destina-
tion context from the structure
around the ends of the link—the
context is taken to be the child of the
nearest ancestor choice component
containing the end of the link (for
further detail on the support for
contexts see [11]).

Finally, anchors within CMIFed
are of different types: normal, paus-
ing and destination. Normal anchors
define the areas which are made ac-
tive for the reader. Pausing anchors
are also active but require that the
reader take some action (typically
‘clicking’) betore the presentation
can proceed beyond the point at
which the anchor was displayed. Des-
tination anchors are used in compos-
ite components and refer only to the
complete component, removing the

COMMUNICATIONS OF THE ACM [chruary 19940 Vol s, oo

“The canal houses ... 7

“De grachtenpanden... ™

Figure 8. AHM channel architec-
ture

requirement for an expliatr value,
CMIFed does not yet support com-
posite anchors.

Conclusion

We feel that the AHM presents a
flexible framework for studying hy-
permedia implementations. The goal
of the model—the union of the basic
concepts of hypertext and multi-
media—has been met, at least within
the limits of existing technology.
Through the use of the CMIFed edi-
tor, we have been able to create a col-
lection of hypermedia presentations
that approximate the richness of the
full model, and we continue to inves-
tigate new ways of providing better
implementation support for hyper-
media. The novelty of the CMIFed-
supported approach to hypermedia
is that the underlying structure can
be freely manipulated, unlike many
current multimedia authoring sys-
tems. This allows for quick and easy
creation, copying and altering of
presentations [9].

Y

hyper EEEIEN

The timing constructs defined by
the AHM allow a generalized specifi-
cation of the behavior of a document.
This behavior can be transformed
for a particular instance to any
SGML-like form [6], including
HyTime [12, 13].

While the AHM, together with the
CMIFed environment, provide a
powerful way to create hypermedia
presentations, it is clear that making
“pleasing” presentations will remain
a complex task. The gathering and
editing of source materials, the defi-
nition of links in a document, and
the aesthetic aspects of combining a
variety of media in a useful manner
remain major hurdles to the produc-
tion of effective hypermedia presen-
tations. Although we feel the AHM
can provide a solid basis for encod-
ing hypermedia documents, the
artistic effort required for effective
use of the media available on
modern workstations should not be
underestimated.

Acknowledgments

The concepts expressed in this article
were developed while working with
CMIFed, implemented by Guido
Van Rossum, Jack Jansen and Sjoerd
Mullender. The work was carried out
as part of the MAGUS project,
funded by the Dutch Ministry of
Economic Affairs. We wish to thank
the issuc editors for their helpful
comments on earlier versions of this

article. @

References

1. Brown, P.J. UNIX Guide:
from ten years’ development. In Pro-
ceedings of the Fourth ACM Conference
on Hypertext. D. Lucarella, J. Nanard,
M. Nanard and P. Paolini, Eds. ECHT
92 (Milano, Italy, Nov. 30-Dec. 4
1992), pp. 63-70.

2. Buchanan, M.C, and Zellweger, P.1
Specifying temporal behavior in hy-
permedia documents. In Proceedings
of the Fourth ACM Conference on Hyper-
text. D. Lucarella, J. Nanard, M.
Nanard and P. Paolini, Eds. ECHT
92 (Milano, Italy, Nov. 30-Dec. 4
1992), pp. 262-271.

3. Bulterman, D.C.A. Specifying and
support of adaptable networked mul-
tumedia, 1, 2 (1993) Springer-Verlag!
ACM Multimedia Systems, pp- 68-76.

4. Bulterman, D.C.A., van Rossum, G.,
and van Liere, R. A structure for
transportable, dynamic multimedia

Lessons

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Hardman, 1.,

-
-

documents. In Proceedimgs of the Swm-
mer 1991 USENIX Conference, (Nash-
ville, Tenn., June 1991), pp. 137-
155.

. Fujikawa, K., Shimojo, S., Matsuura,

I, Nishio 5., and Miyahara, H. Mul-
timedia presentation system ‘Han
with and active
media. In Proceedings of the Summer
1991 USENIX Conference (Nashville,
Tenn., June 1991), pp. 75-93.

mony’ temporal

. Goldfarb C.F. The SGML Handbook.

Oxtord University Press, 1990,

. Halasz, ¥. and Schwartz, M. The Dex-

ter hypertext reference model. NIST
Hypertext Standardization Workshop,
(Gaithersburg, Md., Jan. 16—18 1990).

. Halasz, F. and Schwartz, M. The Dex-

ter hypertext reference model. K.
Gronbak and R. I'rigg, Eds., Com-
mun. ACM 37, 2 (Feb. 1994).
Bulterman, D.C.A
and van Rossum, G. Structured Mul-
timedia Authoring. In Proceedings of
the First International Confevence on
Multimedia (Anaheim, Calif., Aug.
1993), pp. 283-289,

Hardman, L., Bulterman, D.C.A. and
van Rossum, G. The Amsterdam
hypermedia model: Extending hy-
pertext to support real multimedia.
Hypermedia 5, 1, (July 1993), pp. 47—
69.

Hardman, L., Bulterman, D.C.A_,
and van Rossum, G., Links in hyper-
media: The requirement for context.
In Proceedings of Hypertext 93 (Seattle,
Wa. Nov. 93).

International Standards Organiza-
tion, Hypermedia/Time-based struc-
turing language, ISO 10744, 1992,
Newcomb, S.R., Kipp, N.A., and
Newcomb, V.T. ‘HyTime’ the hyper-
media/time-based document struc-
turing language. Commun. ACM. 34,
Il (Nov. 1991), pp. 67-83.

Ogawa, R,, Harada, H., and Kaneko,
A. Scenario-based hypermedia: A
model and a system. In Hypertext:
Concepts, Systems and Applications. Pro-
eeedings of the European Conference on
Hypertext (ECHT °90). A. Rizk, N.
Streitz, and J. André, Eds. Nov. 1990,
INRIA France, pp. 38-51.
Palaniappan M., Yankelovich N, and
Sawtelle M. Linking active anchors: A
stage in the evolution of hypermedia.
Hypermedia 2, 1 (1990), pp. 47-66.
Ripley, G.D. Digital videointeractive—
A digital multimedia technology.
Commun. ACM 32, 7 (July 1989), 154—
159.

van Rossum, G. and de Boer,]J. Inter-
actively testing remote servers using
the Python programming language.
CWIQ 4, 4 (Dec. 1991), pp. 283-303.
van Rossum G., Jansen J., Mullender

62 February 1994/Vol 37, No ! COMMUMNICATIONS OF THE ACM

K.S., and Bulterman D.C.A.
CMIFed: A presentation environ-
ment for portable hypermedia docu-
ments. In Proceedings of the First ACM
International Conference on Multimedia
(Anaheim, Calif., Aug. 1993), pp.
183188,

CR Categories and Subject Descrip-
tors: H.1.1 [Information Systems]: Mod-
els and Principles—systems and information
theory; H.5.1 [Information Systems]: In-
formation Interfaces and Presentation—
multimedia information systems; H.5.2 [In-
formation Systems]: Information Inter-
faces and Presentation—user interfaces;
1.7.2 [Computing Methodologies]: Text
Processing—document preparation

General Terms: Design, Standardiza-
tion

Additional Key Words and Phrases:
CMIFed, composition, context for links,
editing environment, hypermedia mod-
els, multimedia, synchronization

About the Authors:

LYNDA HARDMAN is a member of the
research staff within the Multimedia Ker-
nel Systems group at CWI. Current re-
search interests include hypertext and
hypermedia systems, with a concentration
on authoring systems for complex hyper-
media presentations. email: lynda@cwi.nl

DICK C.A. BULTERMAN is head of the
department of Computer Systems and
Telematics at the Dutch National Center
for Mathematics and Computer Science
Research (CWI), and project leader of the
Multimedia Kernel Systems project,
which investigates fundamental models
for supporting distributed multimedia
systems. Current research interests in-
clude user-level and operating systems
support for transportable and adaptable
multimedia specifications. email:
dcab@cwi.nl

GUIDO VAN ROSSUM is a member of
the research staff within the Multimedia
Kernel Systems group at CWI. Current
research interests include the develop-
ment of models and architectures that
implement multimedia synchronization
relationships. email: guido@ecwi.nl

Authors’ Present Address: Centrum
voor Wiskunde en Informatica (CWI),
PO Box 94079, 1909 GB Amsterdam,
The Netherlands.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission

© ACM 0002-0782/94/0200 $3.50

